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Second Welfare Theorem "

Take an economy E = {X;,u; (§,wi}i_y {Yi};_; {6} suchthat

Q X! REF are convex, open sets, foralli = 1,2, ...1

@ Y, ! R"are convex and closed sets, and admit a concave transformation
function Fj : R " R;i.e.

#
Yi= y#RVIF(y)$ o$ (13)

© Preferences are given by concave and locally non-satiated utility
functions u; : X; " R (equivalent to preferences being rational, convex,
continuous and locally non-satiated)

Qo Jhere exist (g/by) such that X # X;, Fj (yj) > Oforallj=1,..,J and

Theorem (Second Welfare Theorem)

Under assumptions 1 to 4, for any A # A' there exist a price vector p # R';r
and a vector of wealth levels w* # R'+ such that (x*,y*, p,w*) is a Walrasian
equilibrium with transfers of E
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Second Welfare Theorem for 1x1 model

V' o= {(wn,32) ¢ u(wya) > u(at)}

(i) : Pareto Optimal Allocation
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(i) : 2nd Welfare Theorem



]
Non-convexities

How can this construction fail then? Suppose that preferences were not

convex, so that at V' were not convex. This may make it impossible to be able
to separate both sets by a straight line (and hence, cannot be enforced as an
equilibrium). The same thing happens when we have non-convex technology.

Figure: Non-convexity of preferences Figure: Non-convexity of technology



Graphical Representation

THHITHI

FIGURE 2.1, Competitive equilibrium repre-
sented by a separation of sum sets.
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First Welfare Theorem |

First Welfare Theorem

Let (x*,y*, p,w) be a price equilibrium with transfers. Then, if preferences
are rational and locally non-satiated, then (x*,y*) is a Pareto Optimal
allocation.

Note that for this theorem, we need not assume anything about the
consumption set X; for each agent, other that it has to be consistent with
the requirement of local non satiation (i.e. for any given bundle there must
exist an arbitrarily close bundle that is strictly preferred).

We do not have to assume anything about the production sets either, other

than the implicit assumption that Yj # @ for all j (because we know there
exist some y* that is part of a price equilibrium with transfers).
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Statement of the Theorem

Local Non-satiation in the First Welfare Theorem
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AnalyticalExamplel 1PMMVUJPO

One agent that consumes 2 goods. A brm transforms good 1 into good
according to a production functioy, = F (! y1). However, the brm
generates pollutiorP (y2) per unit produced, that alects the agents

utility. Preferences are given by = u(xg, x2, P).

Since there is only one consumer, Pareto Optimal allocations can be
characterized by the solutions to the following programing problem:

max U (Xg, X2, P (y2)) (4)
(X1.X2,y1,Y2)
subject to
X1 =1+ y1 (multiplier = 1 4) (5)
X2 = Yo (multiplier = !5) (6)
y2 " F (! y1) (multiplier = !3) (7
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AnalyticalExamplell 1PMMVUJPO

Which give us the following brst order conditions:

"L "u "L "u
= 1, = = I 1, =
v 0 o T 2 0
"L "F "L "u"P
=11 +1,=0 — = ——+ 11 13=0
"Y1 Syt "y, Py, 2P
Simplifying we get the following FOC
1 "ulxe+("ul" P)Y("PM yg)
dF/dy, ul" xq
So:
dx "ul" x 1 1 "u"P
MR PO * k) # b — 2 — | ur
S04 xe) dx  "ul"xg  dF/dy; "ul xg \"P"y, ®)

Condition 8 together with the resource constraints 5 and 6 characterizes the
Pareto Optimal Allocation((x[°,x5°), (yf©,y5°)).
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Walrasian Equilibrium |

The Prst solution concept we introduce is Walrasian equilibrium for the econon
with only 2 commodities X;, x2) and a single brm. The brmOs probt maximizatic
problem is

max# # py2+ y1 s.t. y2 ' F(! y1) 9)
(y1,y2)
Substitutingy, = F (! y1) $ y1 ="' F~1(y,) into the propt function, we get
the following Prst order condition with respegt :

" [py2! F1(y2)] 1
=0 $% = —
y2 0 p " F/Il yl

(10)

usingthe inverse function theorem.
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Walrasian Equilibrium I

On the other hand, the household solves its problem, taking polluttor P (y»)
and probts# as given:

max u (X, X, P). st. X+ pxo " 1+ #

(X1,%2)

which gives the brst order condition:

"ul" X
MRS = o = 11
P® P (11
Using 10 into 11 we get
1 1 1 "u"P
MRS®4 = < ! 5 | = MRS™
S dF/dy; dF/dy; = "ul" xq < p" y2> S

5I1BU JT .34€ JO FRVIJMJCSJVN JT UPP TNBMM XF
JT CFJOH QSPEVDFE BOE IFODF€ Y CJHHFS VTEF

Robert M. Townsend (MIT)



Walrasian Equilibrium with Pollution rights

Why does this happen? There exists an extra commodity, called OpollutionO t
has no market. In principle, the brm could purchase Opollution rightsO from th
consumer, making it a second input for production (and not ogly.

Suppose that there is a market for Opollution permitsO: a brm that wants to
producey, has to buy also the rights to create a pollution Bf= P (y2). We
endow the household with the rights to sell any level of permits it wants to brir

P, at a bxed price. The household maximization problem is now:

max_u (Xi, Xz, P)
(Xl,Xz,ﬁ
St Xg+ pxo" 1+ #+ qP (12)

whereq is the unit price of the permit, per unit of pollution, ané is the PrmOs
probts. Lettingu be the Lagrange multiplier of the budget constraint, the brst
order conditions are
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Walrasian Equilibrium with Pollution Rights Il
Therefore, in equilibrium:

MRS = pand! gﬂ;gz =q (13)

On the brm side, now it has to buy the permits for the pollution it generates,
which is an extra input in their production function:

+y1+q(l P)= L Fi(y2)! gP
(yhygpg}m py2+ y1+ q(! P) max pyz (y2) ! qP(y2)

So the brst order condition is now
1 "P
+ g— 14
Tyt Oy, (14)

In equilibrium, g is such that the market for pollution permits cleaP = P
Putting together equations 13 and 14 we get

1 "P 1 1 "u"P
MRS*"=p= ——+(q.— = ! ()
P= Y1 A Y2 "Fl"ys "ul"xg \"P"y2
which coincides with the condition that debnes the Pareto Optimal allocation,
which makes this new competitive equilibrium, e"cient.

Robert M. Townsend (MIT)
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Walrasian Equilibrium with Pollution Rights Il

In the previous example, the consumer had the pollution rights which were solc
the Prm. Alternatively, we could endow Prms with pollution rights allow them tc
trade those rights (cap and trade).

Consider a setting with two Prms and b, endowed with pollution right$, and
Py:
maxpys; ! Fiz)+aPi! Pi(yz)) J=ab (15)
2 Z

Sellit all and buy back what is needed- not selling is the opportunity cost

So the brst order condition is now
1 "P

e o T as
Fj/ y1j

721' (16)

p:

If f’;’a > dypzl; then the brm who pollutes more at the margin (Pra) will cut
production compared td, given the brm internalizes the cost of buying the
pollution rights.
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Walrasian Equilibrium with Pollution Rights IV

The idea behind the concept of Oproduction externalitiesO (as well as
Oconsumption externalitiesO) is that the actual choices of other agents alect t
utilities of the household. This is violated by having a larger consumption than
just RY, but rather X; & R-' RHI-D* RJ (i.e. household also cares about the
consumption bundles of all other households, and also cares about the produc
plans of all brms). However, markets only exist for theommodities that the
consumer buys, so it takes the decisions of other agents as given.

In the example, the way to solve the problem is to let consumers sell pollution
permits. In particular, we think of the consumer as having an endowment of
permits, and selling them to brms. However, we can rewrite the budget constre
12 as

X1+ pe+q(l P)=1+ #

so we can think of { P) as the commodity Oabsence of pollutionO with prgce
and that bPrms also produce (instead of jugt).
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Externalitiesand Missing Markets: Arrow (1969)

Externalities can always be interpreted asrdssing market problem.

Arrow (1969) illustrates the general point:

Consider a pure exchange economy. Lety be the amount of the k—th commodity consumed
by the i—th individual (i =1,...,n;k =1,..., m) and x¢ be the amount of the k—th commodity
available. Suppose in general that the utility of the i —th individual is a function of the
consumption of all individuals (not all types of consumption for all individuals need actually
enter into any given individualOs utility function); the utility of the i—th individual can be
written Uj(Xj11, .., Xinm)- We have the obvious constraints.

ZXik < Xk (17)
i
Xjk = Xk, Jj=1,..,n (18)

With this notation a Pareto-e!cient allocation is a vector maximum of the utility functions

Uj (Xj11, ---» Xjnm), Subject to the constraints (17) and (18). Because of the notation used, the
variables appearing in the utility function relating to the j—th individual are proper to him alone
and appear in no one elseOs utility function. If we understand now that there ara?m
commodities (n values fori and for j, m values for k), indexed by the triple subscript jik, then
the Pareto-elciency problem has a thoroughly classical form. There are n?m prices, Piik »
attached to the constraints (18), plus m prices gx , corresponding to constraints (17).
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Externalities and Missing Markets: Arrow (1969)

Following the maximization procedure formally, we see, much as in Samuelson [1954], that
maximizing the lamba-weighted sum of utilities subject to constraints 17 and 18, Pareto efficiency
is characterized by the conditions:

U

i = Pik (19)
Xiik

> Pik = (20)

i

where ! j is the reciprocal of the marginal-utility of income for individual j. (These statements

ignore corner conditions; which can easily be supplied.)

Condition (20) can be given the following economic interpretation: Imagine each individuali to
be a producer with m production processes, indexed by the pairi( k). Process (i, k) has one
input namely commodity k, and n outputs, indexed by the triple (j, i, k). In other words, what
we ordinarily call individual i®s consumption is regarded as the production of joint outputs, one
for each individual whose utility is a"ected by individual iOs consumption.

The point of this exercise is to show that by suitable and indeed not unnatural reinterpretation
of the commodity space, externalities can be regarded as ordinary commodities, and all the

formal theory of competitive equilibrium is valid, including its optimality:



Household j as consumer

max Uj(Xj11, --+s Xjnn)
s.t. E E Pjikxjik = E ar! jk
ik K

Taking FOC:




Household i as producer

Household i as a brm is using as input Xjx over goods k that it is
consuming, but now call it ! yj, where input is negative, to
produce x;ix for other householdsj, j = 1,2,...n.

!m

max  (PjikYjik + OkYik)
K1

st. yjik + Yk = 0"j"k

Taking FOC:
Piik = ik

Ok = Fik
j



Another failure of the first welfare theorem- infinite
commodity spaces as in overlapping generations



Proof of FWT |

Using this lemma, we can now prove the First Welfare Theorem: that is,
that any price equilibrium with transfers gives a Pareto Optimal allocatio

Proof.
Suppose, by contradiction, that there exists some other feasible allocati
(x,y) such thatx; !  x/ for alli and there exist": X" #" x\-. We must
have thatpx- > px- and, using the previous Lemma, we must also have
that px $ px' . Therefore

p—y

Fopxi> 1 px (1)

Robert M. Townsend (MIT)



Statement of the Theorem

Proof of FWT I

Becauswi! maximizes probts given prices, we must have that forj all
py, ! py; which implies that:

py; ! Py, 2)

Putting together (1) and (2), and using the feasibility ok{,y"') :

M 1 1J 1J

P> px =pt+  py ! opt+ opy =" 3)
i=1 i=1 j=1 =1

" $

11 1J 11 1J
p#  x#t# y%>o0=" X$ T+

i=1 j=1 i=1 j=1

So (x,y) was not feasible. 0
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AN EXACT CONSUMPTION-LOAN MODEL OF INTEREST WITH OR
WITHOUT THE SOCIAL CONTRIVANCE OF MONEY*

PAUL A, SAMUELSON
Massachusetts Institute of Technology

Y FIRST published paper' has
M come of age, and at a time

when the subjects it dealt with
have come back into fashion. It de-
veloped the equilibrium conditions for a
rational consumer’s lifetime consump-
tion-saving pattern, a problem more
recently given by Harrod the useful
name of “hump saving” but which
Landry, Bohm-Bawerk, Fisher, and
others had touched on long before my
time.* It dealt only with a single indi-
vidual and did not discuss the mutual
determination by all individuals of the

* Research aid from the Ford Foundation is
gratefully acknowledged.

1A Note on Measurement of Utility,”” Review
of Economic Studies, IV (1937), 155-61.

? As an undergraduate student of Paul Douglas
at Chicago, I was struck by the fact that we might,
from the marginal utility schedule of consumptions,
deduce saving behavior exactly in the same way
that we might deduce gambling behavior. Realizing
that, watching the consumer’s gambling responses
to varying odds, we could deduce his numerical
marginal utilities, it occurred to me that, by watch-
ing the consumer’s saving responses to varying
interest rates, we might similarly measure his
marginal utilities, and thus the paper was born. (I
knew and pointed out, p. 155, n. 2; p. 160, that such
a cardinal measurement of utility hinged on a cer-
tain refutable “independence’ hypothesis.)

market interest rates which each man
had to accept parametrically as given to
him.

Now I should like to give a complete
general equilibrium solution to the de-
termination of the time-shape of inter-
est rates. This sounds easy, but actually
it is very hard, so hard that I shall have
to make drastic simplifications in order
to arrive at exact results. For while
Bohm and Fisher have given us the
essential insights into the pure theory
of interest, neither they nor other writers
seem to have grappled with the following
tough problem: in order to define an
equilibrium path of interest in a perfect
capital market endowed with perfect cer-
tainty, you have to determine all interest
rates between now and the end of time;
every finite time period points beyond
itself !

Some interesting mathematical bound-
ary problems, a little like those in the
modern theories of dynamic program-
ming, result from this analysis. And the
way is paved for a rigorous attack on a
simple model involving money as a store
of value and a medium of exchange. My
essay concludes with some provocative
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InPnite Agents

Environments with inPnite agents arise when considergrlapping generation
models, as in Esteban, Mitra, and Ray (1994).

Consider an ecgnomy with=! agents, two commoditiesx; and x».
Endowments are! 1;,! »; =(1,1) and preferences given by
u(X1,%2) = In(x1) + In(x2). Given pricegp1,p2) = ( 1,p) the demand functions for
all agents are
1+p

2p
We will show thatp = 1 is part of an equilibrium: see that i = 1 then

1
X1 = E(]_+ p) , Xo =

X1=X=1

i.e. agents eat their own endowment, which means that the aggregate resourc
constraint needs to be satisbed, even when we restrict to any Pnite subset of
agents. Is this allocation Pareto Optimal? The answer MO. Consider the
following allocation:

x=(022,(1,1),(1,1),..)
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InPnite Agents

Agenti = 2 gives her endowment to agent 1 (who now hagq2,2)), and agent

i = 3 compensates her by giving her her own endowment, makng@ indil erent
between this new allocation and the equilibrium allocation. To compensate age
i = 3 gives her endowment to= 2 and so on.

Since there is an inbnite number of agents, this allocation is feasible (which wc
not if we had a Pnite number of agents!). Since ageént 1 is strictly better d ,
andi! 2 are indl erent (since they have exactly the same consumption bundle
Then, what went wrong with the First Welfare Theorem?

To understand this, we need to understand the most crucial part of the proof: t
way we show that an alternative Pareto Dominating allocation cannot be feasib
is by showing that it cannot be purchased with the aggregate resources of the
economy. This is expressed by condition 3

n pX| > n pl i:u n X| # Il- | | (22)
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Failure with Inbnite Agents

Now, condition 22 holds only wheh; p! ; <! . However, in the equilibrium
allocation we consider:

n p| i = n (1,1)T (1,1)= n 2=1

I I I
and hence condition 22 does not need to hold. Hence, the conclusion of the F
Welfare Theorem does not hold. What would happen if, instead, at the
equilibrium pricep® we have that the value of the endowment p® ; <! 21t
turns out that the First Welfare theorem holds whenever the equilibrium prices ¢
such that the value of the aggregate endowment is Pnite.

Theorem (First Welfare Theorem - General version (Acemoglu 2010))

Let (x®,y®,p,w) be a Walrasian equilibrium with transfers, and suppose
I,L%N&{! }. Then, if preferences are locally non-satiatedd the value of the
aggregate endowment is pPnite

| L
pr= " " oply <! (23)
i=1l=1

Then (x3,y®) is a Pareto Optimal allocation
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Proof

Proof.
Same as in the case with Pnite agents, since equation 23 then implies
if px ! w; for alli andpx > w; for somej, then

px > " wi =" ply

This does not need to hold whenp! ; = I | since we could have the
inequality © > 1 O which will not cause the contradiction in 3 O

y
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