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Second Welfare Theorem

Take an economy E =

!
{ Xi , ui (á) ,!i }

I
i=1 , { Yj }

J
j=1 , { ✓ij }

"
such that:

1 Xi ! RL
+

are convex, open sets, for all i = 1, 2, ...I

2 Yj ! RL are convex and closed sets, and admit a concave transformation
function Fj : RL " R; i.e.

Yj =
#

y # RL
: Fj (y) $ 0

$
(13)

3 Preferences are given by concave and locally non-satiated utility
functions ui : Xi " R (equivalent to preferences being rational, convex,
continuous and locally non-satiated)

4 There exist (˜x , ˜y) such that ˜x # Xi , Fj (yj) > 0 for all j = 1, .., J and%
i ˜xi % ! +

%
j ˜yj

Theorem (Second Welfare Theorem)

Under assumptions 1 to 4, for any � # �

I there exist a price vector p # RL
+

and a vector of wealth levels w⇤ # RI
+

such that (x⇤, y⇤, p,w⇤
) is a Walrasian

equilibrium with transfers of E
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Second Welfare Theorem for 1x1 model
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Non-convexities
How can this construction fail then? Suppose that preferences were not
convex, so that at V ! were not convex. This may make it impossible to be able
to separate both sets by a straight line (and hence, cannot be enforced as an
equilibrium). The same thing happens when we have non-convex technology.

Figure: Non-convexity of preferences Figure: Non-convexity of technology
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Graphical Representation
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Statement of the Theorem

First Welfare Theorem I

First Welfare Theorem
Let (x⇤,y⇤,p,w) be a price equilibrium with transfers. Then, if preferences
are rational and locally non-satiated, then (x⇤,y⇤) is a Pareto Optimal
allocation.

Note that for this theorem, we need not assume anything about the
consumption set Xi for each agent, other that it has to be consistent with
the requirement of local non satiation (i.e. for any given bundle there must
exist an arbitrarily close bundle that is strictly preferred).

We do not have to assume anything about the production sets either, other
than the implicit assumption that Yj 6=? for all j (because we know there
exist some y

⇤ that is part of a price equilibrium with transfers).
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Statement of the Theorem

Local Non-satiation in the First Welfare Theorem
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Externalities and Limited Commodity Space

Analytical��Example��I�����1�P�M�M�V�U�J�P�O

One agent that consumes 2 goods. A Þrm transforms good 1 into good 2,
according to a production functiony2 = F (! y1). However, the Þrm
generates pollutionP (y2) per unit produced, that a!ects the agents
utility. Preferences are given byu = u (x1, x2, P).

Since there is only one consumer, Pareto Optimal allocations can be
characterized by the solutions to the following programing problem:

max
(x1,x2,y1,y2)

u (x1, x2, P (y2)) (4)

subject to
x1 = 1 + y1 (multiplier = ! 1) (5)

x2 = y2 (multiplier = ! 2) (6)

y2 " F (! y1) (multiplier = ! 3) (7)
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Externalities and Limited Commodity Space

Analytical��Example��II�����1�P�M�M�V�U�J�P�O

Which give us the following Þrst order conditions:

" L
" x1

=
" u
" x1

! ! 1 = 0
" L
" x2

=
" u
" x2

! ! 2 = 0

" L
" y1

= ! ! 3
" F
" y1

+ ! 1 = 0
" L
" y2

=
" u
" P

" P
" y2

+ ! 2 ! ! 3 = 0

Simplifying we get the following FOC

1
dF/ dy1

=
" u/" x2 + ( " u/" P) ( " P/" y2)

" u/" x1

So:

MRSPO (x⇤
1 , x⇤

2 ) # !
dx1

dx2
=

" u/" x2

" u/" x1
=

1
dF/ dy1

!
1

" u/" x1

✓

" u
" P

" P
" y2

◆

(8)

Condition 8 together with the resource constraints 5 and 6 characterizes the
Pareto Optimal Allocation

��

xPO
1 , xPO

2

�

,
�

yPO
1 , yPO

2

��

.
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Externalities and Limited Commodity Space

Walrasian Equilibrium I

The Þrst solution concept we introduce is Walrasian equilibrium for the economy
with only 2 commodities (x1, x2) and a single Þrm. The ÞrmÕs proÞt maximization
problem is

max
(y1,y2)

# # py2 + y1 s.t. y2 " F (! y1) (9)

Substituting y2 = F (! y1) $% y1 = ! F�1 (y2) into the proÞt function, we get
the following Þrst order condition with respecty1 :

"
⇥

py2 ! F�1 (y2)
⇤

" y2
= 0 $% p =

1
" F/" y1

(10)

usingthe inverse function theorem.
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Externalities and Limited Commodity Space

Walrasian Equilibrium II

On the other hand, the household solves its problem, taking pollutionP = P (y2)
and proÞts# as given:

max
(x1,x2)

u (x1, x2, P) . s.t. x1 + px2 " 1 + #

which gives the Þrst order condition:

MRS = p $%
" u/" x2

" u/" x1
= p (11)

Using 10 into 11 we get

MRSeq =
1

dF/ dy1
<

1
dF/ dy1

!
1

" u/" x1

✓

" u
" P

" P
" y2

◆

= MRSPO

�5�I�B�U���J�T����.�3�4�€���J�O���F�R�V�J�M�J�C�S�J�V�N���J�T���U�P�P���T�N�B�M�M����X�F���X�B�O�U���Y���€���U�P���C�F���T�N�B�M�M�F�S���	�U�P�P���N�V�D�I���P�G���J�U�€��
�J�T���C�F�J�O�H���Q�S�P�E�V�D�F�E�
���B�O�E���I�F�O�D�F�€���Y�����C�J�H�H�F�S�����V�T�F���M�F�T�T���B�T���B�O���J�O�Q�V�U���B�O�E���F�B�U���N�P�S�F��
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Externalities and Limited Commodity Space

Walrasian Equilibrium with Pollution rights

Why does this happen? There exists an extra commodity, called ÒpollutionÓ that
has no market. In principle, the Þrm could purchase Òpollution rightsÓ from the
consumer, making it a second input for production (and not onlyy1).

Suppose that there is a market for Òpollution permitsÓ: a Þrm that wants to
producey2 has to buy also the rights to create a pollution ofP = P (y2). We
endow the household with the rights to sell any level of permits it wants to Þrms,
P, at a Þxed price. The household maximization problem is now:

max
(x1,x2,P)

u
�

x1, x2, P
�

s.t. x1 + px2 " 1 + # + qP (12)

whereq is the unit price of the permit, per unit of pollution, and# is the ÞrmÕs
proÞts. Lettingµ be the Lagrange multiplier of the budget constraint, the Þrst
order conditions are

" u
" x1

= µ
" u
" x2

= µp !
" u

" P
= µq
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Externalities and Limited Commodity Space

Walrasian Equilibrium with Pollution Rights II

Therefore, in equilibrium:

MRS = p and ! @u/@P
@u/@x1

= q (13)

On the Þrm side, now it has to buy the permits for the pollution it generates,
which is an extra input in their production function:

max
(y1,y2,�P)2Y

py2 + y1 + q (! P) = max
y2�0

py2 ! F�1 (y2) ! qP (y2)

So the Þrst order condition is now

p =
1

" F/" y1
+ q

" P
" y2

(14)

In equilibrium,q is such that the market for pollution permits clear:P = P
Putting together equations 13 and 14 we get

MRSeq = p =
1

" F/" y1
+ q

" P
" y2

=
1

" F/" y1
!

1
" u/" x1

✓

" u
" P

" P
" y2

◆

which coincides with the condition that deÞnes the Pareto Optimal allocation,
which makes this new competitive equilibrium, e"cient.
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Externalities and Limited Commodity Space

Walrasian Equilibrium with Pollution Rights III

In the previous example, the consumer had the pollution rights which were sold to
the Þrm. Alternatively, we could endow Þrms with pollution rights allow them to
trade those rights (cap and trade).

Consider a setting with two Þrms,a and b, endowed with pollution rightsPa and
Pb:

max
y2j �0

py2j ! F�1
j (y2j ) + q

�

Pj ! Pj (y2j )
�

j = a, b (15)

Sell it all and buy back what is needed- not selling is the opportunity cost

So the Þrst order condition is now

p =
1

" Fj /" y1j
+ q

" P
" y2j

(16)

If @Pa
@y2a

> @Pb
@y2b

, then the Þrm who pollutes more at the margin (Þrma) will cut
production compared tob, given the Þrm internalizes the cost of buying the
pollution rights.
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Externalities and Limited Commodity Space

Walrasian Equilibrium with Pollution Rights IV

The idea behind the concept of Òproduction externalitiesÓ (as well as
Òconsumption externalitiesÓ) is that the actual choices of other agents a!ect the
utilities of the household. This is violated by having a larger consumption than
just RL, but rather Xi & RL ' RL(I�1) ' RJ (i.e. household also cares about the
consumption bundles of all other households, and also cares about the production
plans of all Þrms). However, markets only exist for theL commodities that the
consumer buys, so it takes the decisions of other agents as given.

In the example, the way to solve the problem is to let consumers sell pollution
permits. In particular, we think of the consumer as having an endowment of
permits, and selling them to Þrms. However, we can rewrite the budget constraint
12 as

x1 + px2 + q (! P) = 1 + #

so we can think of (! P) as the commodity Òabsence of pollutionÓ with priceq,
and that Þrms also produce (instead of justy2).
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Externalities and Limited Commodity Space

Externalitiesand Missing Markets: Arrow (1969)

Externalities can always be interpreted as amissing market problem.

Arrow (1969) illustrates the general point:
Consider a pure exchange economy. Letxik be the amount of the k�th commodity consumed
by the i�th individual ( i = 1 , ..., n; k = 1 , ..., m) and xk be the amount of the k�th commodity
available. Suppose in general that the utility of the i�th individual is a function of the
consumption of all individuals (not all types of consumption for all individuals need actually
enter into any given individualÕs utility function); the utility of the i�th individual can be
written Ui (xi11, ..., xinm). We have the obvious constraints.

X

i

xik  xk (17)

xjik = xik , j = 1 , ..., n (18)

With this notation a Pareto-e!cient allocation is a vector maximum of the utility functions
Uj (xj 11, ..., xjnm ), subject to the constraints (17) and (18). Because of the notation used, the
variables appearing in the utility function relating to the j�th individual are proper to him alone
and appear in no one elseÕs utility function. If we understand now that there aren2m
commodities (n values for i and for j , m values for k), indexed by the triple subscript jik , then
the Pareto-e!ciency problem has a thoroughly classical form. There are n2m prices, Pjik ,
attached to the constraints (18), plus m prices qk , corresponding to constraints (17).
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Externalities and Limited Commodity Space

Externalities and Missing Markets: Arrow (1969)
Following the maximization procedure formally, we see, much as in Samuelson [1954], that 
maximizing the lamba-weighted sum of utilities subject to constraints 1� and 1�, Pareto efficiency 
is characterized by the conditions:

! j
" Uj

" xjik
= Pjik (19)

X

j

Pjik = qk (20)

where ! j is the reciprocal of the marginal-utility of income for individual j . (These statements

ignore corner conditions; which can easily be supplied.)

Condition (20) can be given the following economic interpretation: Imagine each individual i to

be a producer with m production processes, indexed by the pair (i , k). Process (i , k) has one

input namely commodity k, and n outputs, indexed by the triple ( j , i , k). In other words, what

we ordinarily call individual iÕs consumption is regarded as the production of joint outputs, one

for each individual whose utility is a"ected by individual iÕs consumption.

The point of this exercise is to show that by suitable and indeed not unnatural reinterpretation
of the commodity space, externalities can be regarded as ordinary commodities, and all the
formal theory of competitive equilibrium is valid, including its optimality.
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Household j as consumer

maxUj(xj11, ..., xjnn)

s.t.
!

i

!

k

Pjikxjik =
!

k

qk ! jk

Taking FOC:

" Uj

" xjik
= µPjik



Household i as producer

Household i as a Þrm is using as input xik over goods k that it is
consuming, but now call it ! yik , where input is negative, to
produce xjik for other households j , j = 1, 2, ...n.

max
m!

�K=1

(Pjik yjik + qkyik )

s.t. yjik + yik = 0 " j " k

Taking FOC:

Pjik = ! jk

qk =
!

j

! jk



Another failure of the first welfare theorem- infinite

commodity spaces as in overlapping generations



Statement of the Theorem

Proof of FWT I

Using this lemma, we can now prove the First Welfare Theorem: that is,
that any price equilibrium with transfers gives a Pareto Optimal allocation.

Proof.

Suppose, by contradiction, that there exists some other feasible allocation
(x,y) such thatxi ! i x!

i for all i and there existi " : xi " # i " x!
i ". We must

have thatpxi " > px!
i " and, using the previous Lemma, we must also have

that pxi $ px!
i . Therefore

I

!
i= 1

pxi >
I

!
i= 1

px!
i (1)
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Statement of the Theorem

Proof of FWT II

Becausey!
i maximizes proÞts given prices, we must have that for allj :

py!
j ! pyj which implies that:

J!

j =1

py!
j !

J!

j =1

pyj (2)

Putting together (1) and (2), and using the feasibility of (x! , y! ) :

I!

i=1

pxi >
I!

i=1

px!
i = p! +

J!

j =1

py!
j ! p! +

J!

j =1

pyj =" (3)

p

"

#
I!

i=1

xi # ! #
J!

j =1

yj

$

% > 0 ="
I!

i=1

xi $= ! +
J!

j =1

yj

So (x, y) was not feasible.
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Failure with InÞnite Agents

InÞnite Agents

Environments with inÞnite agents arise when consideringoverlapping generation
models, as in Esteban, Mitra, and Ray (1994).

Consider an economy withI = ! agents, two commodities:x1 and x2.
Endowments are

!
! 1,i , ! 2,i

"
= ( 1,1) and preferences given by

u(x1,x2) = ln(x1)+ ln(x2). Given prices(p1,p2) = ( 1,p) the demand functions for
all agents are

x1 =
1
2

(1+ p) , x2 =
1+ p
2p

We will show thatp = 1 is part of an equilibrium: see that ifp = 1 then

x1 = x2 = 1

i.e. agents eat their own endowment, which means that the aggregate resource
constraint needs to be satisÞed, even when we restrict to any Þnite subset of
agents. Is this allocation Pareto Optimal? The answer is:NO. Consider the
following allocation:

x = (( 2,2) , (1,1) , (1,1) , ...)
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Failure with InÞnite Agents

InÞnite Agents

Agent i = 2 gives her endowment to agenti = 1 (who now has(2,2)), and agent
i = 3 compensates her by giving her her own endowment, makingi = 2 indi! erent
between this new allocation and the equilibrium allocation. To compensate agent
i = 3 gives her endowment toi = 2 and so on.

Since there is an inÞnite number of agents, this allocation is feasible (which would
not if we had a Þnite number of agents!). Since agenti = 1 is strictly better o! ,
and i ! 2 are indi! erent (since they have exactly the same consumption bundle).
Then, what went wrong with the First Welfare Theorem?

To understand this, we need to understand the most crucial part of the proof: the
way we show that an alternative Pareto Dominating allocation cannot be feasible,
is by showing that it cannot be purchased with the aggregate resources of the
economy. This is expressed by condition 3

"
i

pxi > "
i

p! i =" " xi #= "
i

! i (22)

Robert M. Townsend (MIT)



Failure with InÞnite Agents

Now, condition 22 holds only when" i p! i < ! . However, in the equilibrium
allocation we consider:

"
i

p! i = "
i

(1,1)T (1,1) = "
i

2 = !

and hence condition 22 does not need to hold. Hence, the conclusion of the First
Welfare Theorem does not hold. What would happen if, instead, at the
equilibrium pricesp$ we have that the value of the endowment" i p$! i < ! ? It
turns out that the First Welfare theorem holds whenever the equilibrium prices are
such that the value of the aggregate endowment is Þnite.

Theorem (First Welfare Theorem - General version (Acemoglu 2010))

Let (x$,y$,p,w) be a Walrasian equilibrium with transfers, and suppose
I ,L %N&{ ! } . Then, if preferences are locally non-satiatedand the value of the
aggregate endowment is Þnite

p! '
I

"
i= 1

L

"
l= 1

pl ! il < ! (23)

Then (x$,y$) is a Pareto Optimal allocation
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Failure with InÞnite Agents

Proof

Proof.

Same as in the case with Þnite agents, since equation 23 then implies that
if pxi ! wi for all i and pxj > wj for somej , then

"
i

pxi > "
i

wi = "
i

p! i

This does not need to hold when" p! i = ! , since we could have the
inequality Ò! > ! Ó which will not cause the contradiction in 3
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